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Introduction
Demand curves are necessary inputs for energy system modeling whose design fol-
lows the requirements of the energy system model to be applied. The creation of the 
demand curves as described in this paper is carried out within the eGon research project. 
This open source and open data-based project aims at investigating the effects of sector 
coupling on future German energy systems. It encompasses all grid levels in Germany 
and covers different demand sectors such as heat, gas, electricity, and electromobility. 
Thus, sector-specific curves need to be available that are applicable for modeling load 
flow over all grid levels. To cover low-voltage grids, additional data on georeferenced 
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buildings are needed. Aggregated building demands need to be available to model super-
ordinate distribution and transmission grids.

The present publication focuses on methods and input data to assign electricity and 
heat demand curves to all georeferenced residential buildings in Germany which can be 
used e.g. for sample grids in energy system modeling. Taking socio-demographic data 
into account, the method bases on a bottom-up random selection of individual demand 
profiles from a pre-generated pool of synthetic profiles. The electricity demand excludes 
consumers due to sector-coupling such as heat pumps or electric vehicles. The heat 
demand covers drinking hot water and space heating. All results presented in this work 
apply to a scenario for the year 2035 based on the scenario C 2035 of the German net-
work development plan (Übertragungsnetzbetreiber 2021).

State of the art
The majority of existing methods for modeling residential electricity and heat demands 
are either designed for large-scale energy systems with low spatial resolution (e.g. 
national level) or small systems with high spatial resolution (e.g. single house).

In grid planning and large-scale modeling of the German energy system, Standard 
Load Profiles (SLPs) for electricity and gas are widely used (e.g. in Gotzens et al. (2020); 
Ruhnau et al. (2020); Übertragungsnetzbetreiber (2021)). Due to their design, gas SLPs 
can be used as heat demand profiles (BDEW 2021). SLPs are representative profiles 
derived from historical data. The methods are in detail described in VDEW (1985) (elec-
tricity) and BDEW (2021) (gas/heat). The SLPs for electricity had been derived from 
measurements in Germany in the 1980s. However, behavior and electronic devices have 
been changing over the years, wherefore the SLPs differ from current electricity demand 
profiles (Bruckmeier et al. 2017). Another major issue associated with SLPs is the lack of 
variance, i.e. only one gas load profile for different weekdays, seasons and building types 
is included. In addition, SLPs are designed for representing multiple house-holds (HHs). 
According to Kerber (2011) SLPs are suitable for modeling electricity demand of > 400 
HHs, but not applicable for models with a high spatial resolution, as peak demands of 
electricity and heat are underestimated.

A representative electricity and heat demand profile for a single HH can be derived 
from VDI 4655 (Dubiezig et al. 2008). These profiles include higher peak loads needed 
for modeling single houses. However, applying these profiles to multiple HHs would 
result in an overestimation of simultaneity and thus peak loads on higher aggregation 
levels. In addition, the method and data are not publicly available.

An alternative to representative profiles are measured profiles. The amount of meas-
ured data for electricity and heat demand of private HHs is growing due to an increasing 
penetration of smart meters. Nevertheless, publicly available data sets, e.g. (Tjaden et al. 
2015; Schlemminger et al. 2022), include < 100 HHs which is still not sufficient for large-
scale energy models.

To increase the number of available profiles for HHs, researchers had created tools 
for generating synthetic bottom-up profiles. There are load profile generators for cre-
ating either electricity (Von Appen et  al. 2014) or heat demand profiles (Fischer et  al. 
2016), others model both sector demands (Drauz 2016; Pflugradt 2021; Lombardi et al. 
2019). In addition to these conventional statistical models, AI-based approaches exist 
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(Antonopoulos et al. 2020; Zhang et al. 2021; Li and Yao 2020; Cai et al. 2019). In theory, 
all of these tools could be used to create profiles for every HH in a large-scale energy sys-
tem. However, load profile generators depend on various input parameters that are not 
available for every HH. Moreover, load patterns are determined by socio-demographic 
and socio-economic contexts. As the methods from Von Appen et al. (2014) and Drauz 
(2016) found on HH types in line with the data given by “Census” used in this paper, we 
make use of those load profile generators. The accuracy of the synthetic profiles of single 
HHs is proven in the corresponding articles.

In summary, existing methods for residential electricity and heat demand profiles are 
not suitable for modeling load flow that is both country-wide and geographically highly 
resolved. They are either focusing on a high or a low spatial resolution and are not always 
publicly available. This study aims at closing this gap making use of open source tools 
and open data.

Input data sets
Census data on society and buildings for the year 2011 (Statistisches Bundesamt 2011a) 
is used for spatial disaggregation. The original data had been statistically extrapolated 
from HH surveys and enriched with other demographic data. We use the data sets on 
population, HHs, family types and buildings, which provide data in a resolution of 100 m 
× 100 m (Census cells). For confidentiality reasons cells may not hold all of these param-
eters or data may be modified. The extent of the deviation to the original values had been 
given, which allows users to exclude biased data. However, we observe further inconsist-
encies in the filtered data which we examine in “Census data preparation”.

OpenStreetMap data (Geofabrik 2021) is used to assign electricity and heat demands 
to individual buildings. There had been various assessments on quality and complete-
ness of building data in Germany (e.g. Kunze 2012; Hecht et al. 2013; Fan et al. 2014) 
showing that the spatial and semantic accuracy varies among regions and subjects.

In the topology of OpenStreetMap (OSM), tags are used to store metadata on objects. 
In line with the focus of this paper we extract buildings which we expect to have resi-
dential electrical and/or thermal demand. Accounting for 77.5% the ‘building’ tag value 
‘yes’ predominates in the 32.3 million mapped buildings of Germany. Although it incor-
porates various other dedications we include buildings holding this value since a visual 
comparison to aerial imagery showed a considerable degree of accordance with ground-
truth residential structures. Beside this tag value we include tag values ‘house’ (7.1%), 
‘residential’ (3.3%), ‘apartments’ (1.7%), ‘detached’ (0.8%), ‘semidetached_house’ (0.2%), 
and ‘farm’ (0.1%), resulting in a set of 29.3 million buildings in total.

Weather data  is required for the assignment of heat demand profiles. We use tem-
perature data from ERA5 hourly data on single levels from 1979 to present (Hersbach 
et al. 2018) with a spatial resolution of 0.25◦ (about 15–20 km). Following Gerhardt et al. 
(2017), the year 2011 had been selected as a representative weather year. In order to 
reduce the method’s complexity and computational time, the climate zones described in 
Federal Office (2014) had been used to assign weather data to different regions.

Individual electricity demand profiles had been pre-generated using a statistical bot-
tom-up approach developed in Von Appen et al. (2014) and Drauz (2016) and have been 
made available for this work. They comprise 12 HH types that differ in member count, 
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type (adults, children and elderly people) and composition (singles, couples and multi-
households) (Von Appen et al. 2014). To each HH type typical available appliances, their 
electrical demands and usages had been assigned. By varying the times of appliances’ 
(de)activation for each day of the week (randomly or normally distributed), individual 
HH profiles had been generated for the year 2016. We use a set of 99,600 different, pre-
generated profiles which had been published as open data, 8300 for each HH type.

Individual heat demand profiles  had been derived using the load profile generator 
developed in Drauz (2016) which can create combined electricity, space heating and 
drinking hot water load profiles for individual HHs based on various input parameters. 
Annual demand profiles had been generated and published for selected locations in Ger-
many for the year 2011 and subsequently matched to the temperature curves at each HH 
as described in “Heat”. A set of generated demand profiles had been published under 
open data licenses. The published data includes 1259 heat demand profiles for Single 
Family Houses (SFHs) and Multi Family Houses (MFHs) considering different building 
classes and HH types.

Annual electricity demand  is distributed on Nomenclature des unités territoriales 
statistiques (NUTS) 3-level by using the disaggregator-Tool created in the DemandRegio 
project (Gotzens et al. 2020). This tool includes various options to distribute future elec-
tricity demands. For our application, the Bottom-Up-method had been selected which 
assumes future electricity demands based on a prognosis of future population distribu-
tion and annual electricity demands per HH type. Since the final results should be com-
parable to scenario C 2035 from Übertragungsnetzbetreiber (2021), the distribution of 
electrical HH demands had been scaled to meet the overall annual electricity demand of 
119 TWh.

Annual heat demand  is acquired from Pan-European Thermal Atlas (Peta) version 
5.0.1 (Europa-Universität  Flensburg et  al. 2021), which had distributed space heating 
and drinking hot water demands for the year 2015 to Census cells. Census cells with a 
residential heat demand but no Census data on population are dropped and the miss-
ing heat demand had been distributed linearly over the remaining cells. Vice versa, only 
91.8% of populated Census cells have a residential heat demand in Peta. The historic heat 
demand from Peta had been scaled to the total heat demand of the scenario Zielszenario 
in Prognos (2014) as it will decrease in the future due to retrofitting. The heat demand 
for the year 2035 of 379 TWh had been calculated by a linear interpolation between val-
ues for 2030 and 2050.

Methods
Individual heat and electricity profiles are assigned to buildings. The criteria for the 
distribution of these profile types differ as heat profiles exist at building level whereas 
electricity profiles exist at HH level. Different patterns of actual electricity and heat 
demands, e.g. the strong seasonal dependency of heat demand, and the availability of 
input data resulted in different needs for the presented methodology. Firstly, electricity 
profiles are assigned to HHs per Census cell and thereafter to specific buildings. Mis-
matches between Census and OSM building data required to add synthetic buildings, 
which are an additional output of this part of the methodology. Subsequently, the heat 
profiles are assigned to all OSM and synthetic buildings on the basis of aggregated HHs. 
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A flowchart of the general workflow split into the two sections electricity and heat is 
given in Fig. 1. The respective process steps are indexed and referenced in the following 
description.

Electricity

Introduced in “Individual electricity demand profiles” the pool of given electricity 
demand time series offers 12 different HH profile categories. The Census HH data 
per hectare (Statistisches Bundesamt 2011a), however, only allows for a distinction 
between five categories (cf. ‘hh_5type’ in Table  1) as information on HH composi-
tion is not provided. In order to enable using more diverse categories, the Census 
data is complemented by another Census data set with additional information on 
age and number of children in the HHs (Statistisches Bundesamt 2011b). By this, we 
can refine the distinction to ten categories (cf. ‘hh_10type’ in Table  1). The supple-
mentary Census data exists at NUTS 1-level and is used to derive an individual rela-
tive distribution for every federal state. The Census HH data is then used to allocate 
the absolute number of HHs per Census cell. Beforehand, both data sets first need 
to be separately processed, grouped and have imputation methods applied. Table  1 
also contains the assumed number of adult residents per HH category, which we use 
to align the data sets, as one describes HHs per Census cell and the other describes 
residents in HHs at NUTS 1-level. After preparation and conversion of the data sets, 
they are used to assign electricity profiles to HHs in Census cells. The annual demand 
of the profiles is scaled with the adjusted DemandRegio projections at NUTS 3-level. 
Subsequently, the profiles are randomly assigned to residential buildings obtained 
from OSM within the Census cells. In the case of missing buildings, synthetic ones 

Fig. 1 Overview methodology
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are generated to enable the assignment of all generated profiles. The individual pro-
cess steps are described more thoroughly in the following.

Census data preparation (e1–e4)

The supplementary Census data set used in (e1) of Fig. 1 contains information on peo-
ple living in HHs by family type, size and age per NUTS 1-region (Statistisches Bunde-
samt 2011b). It has to be processed and regrouped to be compatible with the individual 
demand profiles and their HH types. As the supplementary Census data does not pro-
vide enough information to differentiate multi-households with different amounts of 
children, this cluster is represented by adults and retiree categories only (cf. ‘hh_10type’ 
in Table 1). Age groups are merged into three groups: children ( < 15 y ), adults ( 15−64 y ), 
retiree ( > 64 y ). Children are excluded as done in Von Appen et al. (2014), where Euro-
stat (2021) was used as basis for the HH compositions. Finally, the number of people in 
the ten HH categories, differentiated here (cf. hh_10type in Table 1), are derived. The so 
obtained numbers represent the people living in HHs but not the number of HHs.

The actual number of HHs is obtained in step (e2) by dividing the number of people 
per HH type by the average number of residents in the respective HH type. As children 
are not included, the mapping of pair and single HHs is trivial (cf. Residents in Table 1). 
The average number of residents per multi-household is approximated by the O0-factor 
as weighted average of the people that do not live in single or pair HHs according to 
Statistisches Bundesamt (2011a).

After the conversion, we calculate the relative distribution of ‘hh_10type’ within a clus-
ter in (e3) (cf. Table 1). In later steps the values are used as weighting factor in a sampling 
process within the HH type clusters.

The Census HH data at cell level (Statistisches Bundesamt 2011a) contains spatial 
information on HHs by family types or by HH size, depending on the filtered attrib-
ute. Table  2 quantifies the attribute coverage in the Census data set. The data exhibit 
data gaps and discrepancies between the different attributes for confidentiality reasons 
(Destatis 2018). Census cells with a confidential population value are excluded, result-
ing in about 3 million Census cells. In total, 71.9% of these cells hold data on people liv-
ing in HHs by family type. Comparing the total number of HHs and HH types per cell, 
we encounter minor differences due to the confidentiality measures taken (not shown in 

Table 1 HH type clusters and number of adult residents

Cluster hh_5type id hh_10type Adult residents

1 Singles—S* SR Single retiree 1

SO Single adults

2 Pair—P* PR Pairs retiree 2

PO Pairs adults

3 Single with children—S+ SK Single with children 1

4 Pair with children—P+ P1 Pair with 1 child 2

P2 Pair with 2 children

P3 Pair with 3 children

5 Multi-households—M* OR Multi-household retiree O0-factor

OO Multi-household adults
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the table). These discrepancies are accepted. The other Census cell either have no data 
on the HH type distribution or no information about HHs at all. In those cells, data is 
imputed in step (e4). 11.8% show only cumulative values but no data on the individual 
shares of HH’s family type. This only occurs in cells with a small amount of HHs (3–7) 
which is reflected by the comparatively low population share shown in Table 2. We use 
the average distribution of HH types for cells with the same amount of HHs. The average 
share is multiplied by the total number of HHs and rounded to the next integer value. 
If the sum of HH types differs from the rounded sum, the difference is added or sub-
tracted from a randomly chosen HH type to retain the HHs total per cell. 16.3% of the 
populated cells have no information on HH number or distribution. In these cases, a HH 
type distribution is randomly drawn from cells with the same population value. If there 
are no cells of the respective population value with HH data, the subgroup with the next 
smaller population value is used.

Demand profile assignment and scaling (e5–e8)

The two prepared data sets of the Census data are merged in (e5) using proportion-
ate sampling at NUTS 1-level within the HH type clusters (cf. Table 1) as illustrated 
in Fig.  2. To refine the ‘hh_5type’ at cell level but keep the distribution at NUTS 
1-level, HH types are drawn randomly but with a proportionate weight at NUTS 
1-level and within HH type clusters. The distribution from (e3) is taken as propor-
tionate weighting factor. The pool size meets the total number of HHs of this cluster 
at NUTS 1-level using the total number derived from the data in (e4). In step (e6), 
this pool is then divided into subgroups representing the Census cells. The sample 
size in these subgroups corresponds to the number of HHs of this type in the cells 
taking the results from (e4). By this, we obtain refined spatial information on the 
‘hh_10type’ HH types per Census cell.

Subsequently, electricity profiles are assigned to each HH in step (e7). Profiles are 
randomly sampled (without replacement) from the profile pool according to the 
number of HH types per cell. Therefore, no profile occurs more than once within a 
cell but can be used in other cells, which is necessary to reduce the size of the elec-
tricity demand profile pool.

To scale the electricity profiles per HH in step (e8), the profiles are aggregated 
at NUTS 3-level via the Census cells’ centroids. The resulting annual demand in 

Table 2 Coverage of attributes in Census HHs data (Statistisches Bundesamt 2011a) in populated 
cells

HH data on Number of cells % Population sum %

Total number Family types

Yes Yes 2,285,989 71.9 75,910,432 94.5

Yes No 373,756 11.8 2,107,124 2.6

No Yes 0 0.0 0 0.0

No No 517,978 16.3 2,306,726 2.9

Sum 3,177,723 100.0 80,324,282 100.0
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each NUTS 3-region is multiplied by a scaling factor to meet the annual electricity 
demand described in “Annual electricity demand”.

OSM building assignment (e9–e11)

To assign the individual profiles to specific buildings from OSM, the deviation 
between both data sets need to be covered. They are attributable to different short-
comings, the most notable ones being: Census data is incomplete (cf. Table  2) and 
incorporate statistical bias from the methods applied in the original data prepara-
tion (Statistisches Bundesamt 2015). In the OSM dataset building data is missing or 
imprecise (cf. “Discussion”).

In case of Census cells with assigned profiles but without OSM buildings synthetic 
buildings—randomly placed squares of edge length 5 m—are generated in (e9). As offi-
cial data set and despite its shortcomings mentioned above, Census can be assumed 
more complete and consistent than OSM. Therefore its building count is used as refer-
ence to determine the number of synthetic buildings to be created. If no data is available 
in a cell, the number of buildings is derived by the median profile-to-building rate of the 
entire building data set and applied to the number of profiles assigned to the cell.

The profiles are randomly assigned to buildings within the respective cell in (e10). 
First, one profile is assigned to each building until all profiles are distributed. If the 
number of buildings within a cell exceeds the number of profiles, some buildings 
have no profiles. If the number of profiles exceeds the number of buildings, the sur-
plus profiles are randomly assigned to buildings within the cell. This results in build-
ings with no, one or multiple profiles. The building type is distinguished in (e11), 
buildings with only one HH are classified as SFHs, all others as MFHs.

Heat

The methodology to create heat demand profiles for all residential buildings in Germany 
combines individual bottom-up load profiles with the top-down method commonly 
used to assign SLPs. Intra-day heat demand profiles are assigned based on the house 
type and mean temperature of the day according to BDEW (2021). But in contrast to 
SLPs, not one intra-day profile per building type and temperature class, but a pool of 
various different profiles is taken into account.

Fig. 2 Exemplary refinement of households in cluster 1 from Singles—S* to SO and SR in (e5–e6) (cf. Table 1)
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Intra‑day profiles (h1–h3)

In the first step (h1), the 1259 annual heat demand profiles described in “Individual heat 
demand profiles” are cut into around 460,000 intra-day profiles. The information on the 
house type from the individual load profiles is thereby retained. Using the average tem-
perature per day, the temperature-classes from BDEW (2021) (Table 3) are assigned to 
each intra-day profile. To be able to meet the annual heat demand values, the intra-day 
profiles are scaled to a normalized daily demand of 1 (h2). The intermediate results are 
intra-day profiles per temperature class and building type.

Daily heat demands per building (h4–h8)

The heat demand depends on temperature curves. In order to reduce the complexity and 
computation time, the same temperature curve is assigned to all cells within the same 
climate zone in step (h5). Temperature classes are assigned to each climate zone and day 
using the average daily temperature of the representative weather measurement point 
inside the climate zone. The information on temperature classes per day is assigned to 
each Census cell in the climate zone (h6). Based on the defined temperature class per cell 
the ratio of the demand on a respective day to the annual demand from Peta is calculated 
using the sigmoid function described in BDEW (2021) with the parameters for the most 
recent building class (h4).

In step (h7), the daily heat demand per Census cell is distributed proportionally to the 
number of houses per cell, which was allocated in step (e11).

Heat demand curves per building (h9)

The heat demand curves per building are created by combining the results from previ-
ous steps: first, intra-day profiles with the corresponding house type and temperature 
class are selected for each building from the pool of profiles (h8). The selected (normal-
ized) profiles are then scaled by the daily demands per building (h9). These daily demand 
curves per building are composed to yearly profiles. The final heat demand curves per 
building can be aggregated to different levels, e.g. Census cells or district heating areas.

Results
The methods to allocate electricity and heat demand curves to buildings are applied to 
Germany. Resulting profiles are analyzed along different spatial aggregation levels.

The first aggregation level is the Medium Voltage Grid District (MVGD) near Flens-
burg as a study region, visualized in the upper part of Fig. 3. It includes 40,300 HHs in 
the city Flensburg and six neighboring rural municipalities.

On the second aggregation level, 20 Census cells including 565 HHs in the city of 
Flensburg were selected. This number of HHs lies within the valid scope of the SLP and 
allows a comparison with our results. The selected cells are visualized in the middle part 

Table 3 Temperature classes

Average Min. −20 −14 −9 −4 1 6 11 16 21 26

Temperature Max. −15 −10 5 0 5 10 15 20 25 40

Class 1 2 3 4 5 6 7 8 9 10
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of Fig.  3. The amount of profiles assigned to residential buildings is indicated by the 
colors. Orange and grey buildings are not considered here, as they are not residential 
respectively not assigned to the focused cells (clipped by building area’s centroid).

The smallest aggregation level is a single building as an example for data used for 
modeling low-voltage grids. The randomly selected building of interest is marked red 
in a north-west cell in the middle part of Fig. 3. Following our methods and data this 
building is a MFH with two HHs (2 aggregated profiles).

Fig. 3 Electricity demand on NUTS 3-level (upper left); Exemplary MVGD (upper right); Study region in 
Flensburg (20 Census cells, bottom)
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Table 4 provides information on the total number of buildings, as well as assigned 
electricity and heat profiles for different aggregation levels. Mapped residential build-
ings are extracted from OSM as described in “OpenStreetMap”, resulting in 29.3  M 
buildings in Germany. In 246,498 Census cells the extracted buildings are not suffi-
cient for the number of HHs with electricity demand. Therefore, a total of 1.1 M syn-
thetic buildings were created, as described in “OSM building assignment”. Electricity 
demand profiles were assigned to 21.2  M (72.5%), heat demand profiles to 20.5  M 
(70%) of mapped and synthetic residential buildings.

Table 5 shows the result of the local differentiation of HH types which influences 
the aggregated profile at different levels. Except for the building level, where profiles 
are randomly assigned within a Census cell, the differences in values primarily origi-
nate in the Census data.

In the following sections, the electricity and heat demand profiles are analyzed in 
detail for the described aggregation levels and compared to commonly used SLPs.

Electricity demand profiles

Exemplary electricity demand profiles are visualized on different aggregation levels in 
Fig. 4a for a randomly selected day (1st of February). The curves show the hourly elec-
tricity demand relative to the daily electricity demand in percent. The corresponding 
SLP H0 profile of the NUTS 3-region is included for comparison.

The normalized electricity demand curve of a single building (blue line) shows the 
highest fluctuations. A maximum of 16% of the daily electricity demand is reached 
at 12  pm. Compared to the individual building profile, the demand curves show 
a significant smoothing on the higher aggregation levels of 20 Census cells (green) 
and MVGD (yellow). However, there is no visual difference in smoothness between 
those two aggregation levels, although the shares of HH types differ significantly (cf. 
Table 5). Besides small temporal deviations, their curves follow a similar trend with 

Table 4 OSM buildings, residential buildings and residential buildings with profiles assigned per 
aggregation level. OSM: from OSM, Synth.: synthetically created

Buildings Res. buildings Res. bld. with el. profile Res. bld. with heat 
profile

OSM Synth. OSM Synth.

20 cells 413 402 315 0 315 0

MVGD 33,160 26,214 19,250 313 18,628 269

Germany 32,328,048 29,304,950 20,101,076 1,137,018 19,538,544 979,988

Table 5 HH distribution at different aggregation levels in %

hh_10type OO OR P1 P2 P3 PO PR SK SO SR

Germany 0.76 0.92 9.88 9.96 5.61 17.11 11.07 6.39 23.92 14.36

MVGD 0.99 1.10 6.60 6.84 3.84 15.74 10.48 6.18 29.56 18.68

20 cells – 6.00 2.00 2.00 4.00 10.00 4.00 8.00 34.00 30.00

building – – 50.00 50.00 – – – – – –
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disproportionately high demand peaks. Maximum hourly peaks reach about 10% (20 
cells) and 9% (MVGD) of the daily electricity demand. The load never drops below a 
base load of 0.8% in all of the three profiles. In comparison, the SLP H0 (grey) follows 
a similar yet smoother pattern like the aggregated profiles (20 cells, MVGD) with a 
minimum daily load of 1.5%.

The observed smoothing suggests balancing effects between the individual profiles. 
For a closer examination, several percentiles of the entire profile set on the aggrega-
tion level of MVGD are calculated and presented in Fig. 4b. During night, the range 
among the examined percentiles is very low, whereas during day times significant 
variances can be observed with the temporal distribution following a similar pat-
tern as the aggregated profiles in Fig. 4a. The magnitudes’ spread maximizes at peak 
load times: while at 4 am the range of hourly demand shares between the 10th and 
90th percentile is [0.5%; 1.3%] , it gets wider over the day, reaching a maximum of 
[1.8%; 24.1%] at 8 pm. Similarly, the upward deviation compared to the median (black) 
increases at peak load times. However, compared to the peaks in the morning and 
at noon, at 8 pm a strong emphasis on the upward deviation above the 60th percen-
tile can be observed. The minimum load in the 10th percentile is 0.7% of the daily 
demand per hour.

In Fig. 5 the aggregated time series at MVGD level is compared to the SLP which 
was scaled to the same annual demand of 117 GWh. The general pattern is compa-
rable—weekdays and weekends, as well as holidays are recognizable. Although the 
demand peaks match in time, they differ in magnitude: our results show a strong 
emphasis on the peaks, whereas the SLP’s data is distributed rather uniformly. A 
striking difference occurs in the night hours (2–5 am) when the base load is sig-
nificantly lower in our results than in the SLP’s. Thus, during daytime the demand 
is higher, especially on midday (12 am) and evening peak hours (6–8 pm). Table  6 
quantifies this observation. Our data shows a higher standard deviation, as well as a 
lower minimum (night) and a higher maximum (day) value. Moreover, the increased 
spread in load manifests in the 25% and 75% percentiles with higher deviations to 
the median value. Also, the SLP extends the load duration in the late evening hours 
(8 pm–12 am) during the transition season to summer time and narrows to win-
ter time showing a step-like character. This effect is not included in our method. 

Fig. 4 Electricity demand time series and variation on selected day
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Instead, seasonal changes are mainly reflected by a decrease in total load during the 
day.

Heat demand profiles

The resulting heat demand profiles on different aggregation levels are visualized in Fig. 6 
for a selected summer and winter day to show seasonal differences. The curves show 
the hourly heat demand relative to the daily sum in percent. The characteristic of the 
corresponding SLP (gas) for private HHs, considering the share of SFH and MFH of the 
NUTS 3-region is included for comparison.

Fig. 5 Electricity demand at MVGD level

Table 6 Descriptive values for new method and SLP electricity time series in MVGD

Unit Mean Std Min 25% 50% 75% Max

SLP MWh 13.383 5.255 4.508 8.770 14.496 17.181 24.897

New MWh 13.383 8.724 2.682 4.734 12.805 18.535 38.597

Fig. 6 Heat demand time series for different aggregation levels
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The normalized heat demand curve of a single building (blue) includes high peaks, 
especially during the day in summer where up to 82% of the daily heat demand are con-
sumed in 1 h of the day. Heat is not consumed at every hour of the day. At night there is 
nearly no heat demand. During the chosen winter day there is a constant heat demand 
of about 2.5% at each hour of the day. The demand rises in the morning and includes a 
peak of about 10% in the afternoon. When combining the demand curves of all buildings 
in the 20 Census cells, the normalized curve (green) is smoother, with a maximum peak 
of about 5% in the selected winter day and 8% in the summer day. Both curves rise in the 
morning and decrease at noon. The characteristic of all buildings in the MVGD (yellow) 
is similar to the one of the 20 Census cells but smoother. In comparison to the SLP gas 
(grey), the profiles of single buildings differ strongly due to the high demand peaks in 
single buildings. The more profiles are combined in 20 cells and MVGD, the more they 
align with the SLPs gas.

The fluctuation of the hourly heat demands for all buildings in the selected days in 
winter and summer are visualized in Fig. 7 by percentiles with upper limits from 60 to 
90% and the median (black). Figure 7a shows that the general characteristic is similar for 
most buildings in winter, as the rise in the morning and decrease at noon is included in 
every building profile. During the day, the deviation is generally higher than at night. The 
fluctuation of heat demand profiles in summer (Fig. 7b) is higher than in winter, as every 
percentile has a wider range in the summer day. Figure 6b indicates that the higher peaks 
result in higher fluctuations. In addition, the percentile ranges in winter are symmetric 
to the median value, whereas the maximum upward deviation is higher in summer. In 
nearly every hour of the summer day 20% of all buildings are without heat demand.

The distribution of heat demand over the year involves a strong seasonal dependency. 
It it is significantly higher in winter than in summer. Figure 8 visualizes the heat demand 
over the year for the selected MVGD from the presented methodology in comparison 
to the SLP (gas). The seasonal dependency is similar in both methods. In the presented 
methodology, the heat demand is at night much lower than during the day. In summer 
there is nearly no heat demand at night. This effect is also visible in the SLP data, but not 
as pronounced as in our method. At 12 pm, the heat demand is decreased in the pre-
sented method which is not indicated by the SLPs.

Fig. 7 Heat demand variation of buildings in MVGD
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Discussion
The found results are first discussed with regard to both profile assignment methods. 
Subsequently, sector-specific characteristics are examined.

The demand allocations for both electricity and heat mainly base upon data sets from 
Census and OSM. As examined in “Census data preparation”, the household-related 
attributes from Census cover most of the cells. Yet, in 28.1% of the cells (Table 2) it is 
partially incomplete or inconsistent which leads to systematic errors in our results. 
The induced error in Germany-wide demand, however, is less significant as those cells 
account for only 5.5% of the total population. Moreover, the Census data set is outdated 
and applied statistical methods for spatial and demographic extrapolation (Statistisches 
Bundesamt 2015) affect the quality of our results to a non-quantifiable degree.

OSM also has several shortcomings: we extracted 29.3  million residential buildings 
in total (Table 4). This number deviates significantly by +51.8% from the latest official 
data of 19.3 million (Statistisches Bundesamt 2020) and +58.4% from the 2011 Census 
data of 18.5 million (Statistisches Bundesamt 2011a). This discrepancy is likely driven by 
the inaccurate tagging aside from different definitions of residential buildings, as well as 
OSM users’ susceptibility to mapping errors. However, as we incorporate Census data, 
the number of mapped and synthetically created buildings that are assigned electricity 
and heat profiles by our methods is smaller (Table 4) and deviates by only +10.4% (elec-
tricity) and +6.7% (heat) from official data (Statistisches Bundesamt 2020). Assuming 
that all buildings from the official data are inhabited and therefore have demand, our 
results are in reasonable accordance in terms of the total number of buildings. Neverthe-
less, this does not indicate a similar level of agreement on higher resolution levels. As we 
did not compare building counts on other levels, we cannot quantify errors compared 
to official statistics or ground truth. Another shortcoming in OSM data are missing 
building data, which lead to further deviations. Therefore, these data gaps are filled with 
synthetic buildings using Census data as described in “OSM building assignment”. This 
results in shares of 5.4% (electricity) and 4.8% (heat) synthetic buildings with demand. 
While their real locations cannot be determined, the population-induced building 
demand is retained by our methodology.

Fig. 8 Heat demand at MVGD level
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The distribution of annual electricity demands from DemandRegio bases on a forecast 
of population per NUTS 3-region. Our distribution methods, on the other hand, utilize 
Census data from 2011. This results in a mismatch between the electricity demand and 
the Census population. However, the population forecast just differs slightly and only in 
a few regions (Gotzens et al. 2020). Peta’s annual heat demands are based on yet other 
population input data, requiring additional assumptions. Overall, this leads to 3% of res-
idential buildings with electricity but without heat demand, which restricts the usability 
of the corresponding profiles in the affected cells.

The only linkage of both allocation methods are the derived residential buildings in 
step (e11) shown in Fig. 1. A temporal linkage of electricity and heat consumption is not 
considered. It is thus possible that the heat demand curve of a specific building indicates 
that it is occupied and shows a peak load whereas the electricity demand indicates differ-
ently. This influences profiles on a high spatial resolution, but is leveled out when aggre-
gating multiple profiles. In addition, the individual electricity demand profiles had been 
created for the year 2016 whereas the heat demand profiles had been generated using 
the weather year 2011. Since the electricity profiles are less weather-sensitive and dif-
ferentiation of weekdays and weekend days is not considered in the assignment of heat 
demand profiles, the error is considered to be small.

The resulting profiles are only analyzed for an exemplary region on selected aggrega-
tion levels and compared with SLPs on a higher aggregation level. Further validations, 
e.g. statistical analyses of all profiles on different aggregation levels, are not part of this 
study.

Demand profiles for single buildings were validated in Drauz (2016) and Von Appen 
et al. (2014). In order to validate the suitability of this methodology, aggregated meas-
urement data, e.g. from electricity or district heating grid operators on HH demand 
are necessary. To our knowledge, these data are currently not freely accessible or not 
acquired—while e.g. the regional electricity grid operator is obliged to publish an 
annual, aggregated load curve according to §17 StromNZV (Die Bundesregierung 2021), 
the data on low voltage level (Stadtwerke Flensburg 2021) are not provided per grid and 
sector and most likely include demands of other sectors such as commercial, trade and 
services. Therefore, we can not use it as a reference and draw a comparison to the SLP. 
The resilience of the resulting profiles is higher on aggregated levels. Profiles for a single 
building can be biased due to the random selection. To increase robustness, multiple 
samples could be taken. Further validations are easily possible due to the applied open 
source principles.

Electricity demand profiles

Revisiting the quality of the Census data, there are more shortcomings to be discussed 
specific to the electricity sector. Due to differences in HH categories and the corre-
sponding methodology, the total HH distribution obtained by Census differs from the 
one used in Von Appen et  al. (2014), which first verified the used demand profiles. 
This leads to a predominance of single HHs and a less dominant share of multi HHs 
in the aggregated HH distribution by Census. On building level, this is of high impact 
but might also affect the smoothness of profiles at aggregated levels. Since there is no 
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alternative data with a sufficient spatial resolution, we can neither correct nor quan-
tify this error.

The further applied imputation methods presented in “Census data preparation”lead 
to errors regarding the shares of HH types in 11.8% of the cells (Table  2). Moreover, 
16.3% of the cells do not hold HH information at all. While we fill those data gaps, this 
results in wrongly assigned profiles with respect to HH types. This bias is again profound 
on building level, yet less significant on higher aggregation levels. As the imputation is 
based on the population density, mixing rural and urban cells is mostly avoided. Assum-
ing the same HH distribution for cells with identical population density reduces the vari-
ation in HH types to some extend but can not be quantified as we lack reference data.

With regard to the individual demand profile pool, it is worth mentioning that the 
HHs type distribution differs compared to the national one obtained from Census. 
The pools of HH types have equal size (8.3% each), which leads to disproportionately 
small pools for the predominating types (cf. Table 5). Thus, at high aggregation levels, 
profiles are assigned more than once as mentioned in “Demand profile assignment 
and scaling”. The profile pool could be enlarged and shares adjusted to the national 
HH distribution. This may have an effect on the smoothness of the aggregated pro-
file. However, as in the examined MVGD (40,300 HH), profiles mainly occur once 
(50%), twice (31%), or three times (15%), the influence is considered to be small. An 
in-depth analysis of the supplied input profiles is not in the focus of this work as we 
aim at attaining a spatial distribution of the profiles. However, it should be noted that 
the profiles base upon today’s user behavior, occupancy hours and device efficiencies 
which are subject to change in the future, which leads to forecast errors in our data.

The assumptions made in “Census data preparation” as well as the random assign-
ment of profiles to cells in “Demand profile assignment and scaling”and subsequently 
to buildings in “OSM building assignment” inevitably lead to systematic errors. The 
data quality might increase by using additional OSM data such as buildings’ ground 
area or number of storeys during the assignment process.

Analyzing the results in the time domain, the significantly steeper gradients, higher 
peaks and smaller base loads are key differences seen in Fig. 4a, but also fit in with the 
technological development that has taken place since the development of these profiles 
in the 1980s. Nowadays, there are more electrical appliances in use with lower stand-by 
consumption. Hence, higher peaks in occupancy hours during the day and lower con-
sumption during the night time seem plausible. As the degree of aggregation increases, 
a clear smoothing behavior can be seen which can be explained by the increasing vari-
ance of the profile types used (cf. Table 5). Although the MVGD contains many more 
HH then the SLP’s acceptable lower bound, significant deviations occur especially dur-
ing peak time hours where the load variation is maximal (cf. Fig. 4b). The authors of Von 
Appen et al. (2014) state, that aggregated profiles from different years would be neces-
sary to be even more similar to the SLP. Since we are not interested in aligning our data 
to the SLP but in profiles for specific years and of great regional heterogeneity, the devia-
tion is acceptable and even beneficial to the investigation of low voltage grids.

Overall, the large regional heterogeneity of the resulting electricity demand profiles 
and observed smoothing effects for higher aggregation levels make the presented meth-
odology better suited for the purpose of modeling load flows over all voltage levels than 
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the usage of SLPs. Another advantage is the adaptability of the presented method to 
model electricity demand for different future scenarios.

Heat demand profiles

Input data as well as the method influence the quality of the resulting HH heat demand 
profiles. As described in “Discussion”, there are mismatches in the main input data 
sets Census and Peta. However, due to the small amount of affected cells, profiles are 
available for most buildings. The effects on aggregated profiles is therefore considered 
to be small. In addition, the distribution of annual heat demands to buildings could be 
improved. The annual heat demands per Census cell are evenly distributed to buildings. 
In case of cells with SFHs and MFHs, this leads to an overestimation of SFHs profiles.

Besides, the number of individual heat demand profiles was substantially limited by 
computational resources. Therefore, neither data on HH nor day types are considered 
when distributing the heat demand to buildings and over time, reducing the consistency 
to electricity profiles. Using intra-day profiles enlarged the pool of profiles and their var-
iation. Composing the intra-day profiles could potentially lead to inappropriate steps at 
midnight. However, because of the lower heat demands at night, this is not observed in 
the resulting annual profiles.

The resulting heat demand profiles are plausible on different aggregation levels. Look-
ing at the load curve of single buildings there are high peak demands during occupancy 
hours. These peaks are caused by hot water demand, which is characterized by abrupt 
random instantaneous rise and fall (Drauz 2016). In summer, the heat demand profiles 
are dominated by hot water demand, which causes higher peak values than in winter 
where the profile shape is an overlay of the abrupt hot water and more constant space 
heating demand. These individual variations in the curve shapes of single buildings 
caused by occupancy are absent in the SLPs.

When aggregating the profiles of buildings, the peak demands are lower and the simi-
larity of the generated profiles with the SLP is increased. This is caused by the fluctua-
tion of profiles at building level. Single building profiles include peaks due to hot water 
demand in every occupancy hour, so the peaks balance out. Hence the implemented 
methodology provides a means of increasing the spatial resolution of the existing SLPs. 
Also, the similarity of the aggregated profiles with SLPs shows the validity of the pre-
sented methodology. The aggregated annual demand curves show a similar seasonal 
dependency as the SLP. This indicates reasonable assumptions of temperature data and 
the selected climate zones. In the presented method, the heat demand in the morn-
ing rises slightly later and more abruptly than in the SLPs method. Since the SLPs are 
created using gas profiles, the more abrupt rise can be caused by the inertia of the gas 
system which is not influencing the bottom-up heat demand profiles of the presented 
methodology. In contrast to SLPs the presented methodology includes a decrease in heat 
demand curves at midday. This could be caused by the individual bottom-up profiles 
because hot water demands at midday are unlikely according to the occupancy model 
used in the load profile generator.

All in all, the drawbacks associated with SLP are addressed to a great extent by this 
methodology. Heat demand peaks have a better representation along with a correct rep-
resentation of the summer demand. The consideration of newer building classes makes 
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the future demand forecast possible, but upcoming changes in the behavior and future 
building characteristics (e.g. low-energy houses) could not be considered. Finally, it can 
be stated that even with these additional features, the methodology can develop a final 
aggregated output in line with the commonly used SLP methodology, thus justifying its 
possible future application.

Conclusion and outlook
This study presents a method to create high-resolution residential electricity and heat 
demand profiles for energy system analyses suitable for various aggregation levels. All 
input data sets as well as implemented process steps are publicly available following 
open data and open source principles. The method was used to model demand profiles 
for every residential building in Germany.

Exemplary resulting demand time series show reasonable results on different spatial 
and temporal aggregation levels. The large diversity of demand profiles for single build-
ings with individual peak loads is useful for modeling a wide variety of distribution grids. 
When aggregating multiple demand profiles for modeling the transmission grid, the pro-
files are smoothed and to some extend converge to the commonly used SLPs. A more 
thorough comparison of the resulting profiles with actual data will be feasible once suf-
ficient open data is available.

Updates of the input data sets can improve the quality of the resulting profiles in the 
future: there will be a new Census data set in 2022 (Statistisches Bundesamt 2022) which 
will provide more recent socio-demographic data for Germany. The Census update will 
also lower currently existing temporal mismatches to the other central input data set 
OSM. Besides, OSM’s coverage and quality are likely to improve in the future (Open-
StreetMap Contributors 2022), resulting in a better mapping of residential buildings.

The quality of the resulting profiles could also be enhanced by enlarging the pool size 
of individual demand time series and therefore increasing their variety. Moreover, the 
resulting data’s consistency could be improved by closer linking of the electricity and 
heat demands. Future modifications like these are facilitated by the open character and 
can further improve the comprehensive load data created in this work.
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